舊業重溫11--求√65 -√63的近似值

更新於 發佈於 閱讀時間約 2 分鐘

在油管上看到有人解這個題目,

raw-image

取到小數點以下第二位,第三位四捨五入。

讀友如果閱讀過之前的拙作《舊業重溫8--求平方根近似值的簡便方法》,可能會採取以下的計算步驟:

raw-image

主解的油挑伯(Youtuber)用類似的概念,經由配方也為兩個平方根推出相同的有理數近似值,得到一樣的答案。

就本題而言,這個答案是對的。然而方法有瑕疵,亦即碰巧對了,但不保證改變數字或條件仍適用。譬如,當題目改成 √67 - √65,我們用同樣方法算算看:

raw-image

也是1/8, 近似值也取成0.13

但實際上

raw-image

       = 0.124038…

也就是√67-√65實際值比0.124038…小,依四捨五入法,近似值的最大可能只取到0.12,不會是0.13。

這樣的解法還有一個問題。油挑伯忽略了真值的差與近似值的差未必相等(譬如計算 2/3 – 1/7, 不論這兩個分數取幾位小數近似值,永遠都不會恰好等於11/21),萬一真值的差略小於0.125,那麼四捨五入最大只能取到0.12;萬一真值大於0.135,那麼四捨五入後要大於或等於0.14。

出問題的關鍵在於:油挑伯並未去深究近似值與真值間的誤差大小,是否能確保比0.01更小(因為要取到第二位小數),所求是否確實介於0.125至0.135之間。以下筆者就用不等式的理由,嚴謹的推導過程,來保證此結論。

定出上限:

模仿上文的推導,

raw-image

          < 0.127

定出下限:

raw-image

綜上討論,所求兩根數之差介於0.125至0.127之間,依四捨五入原則,故取近似值為0.13。

[陳傳義]拍攝

[陳傳義]拍攝

註1註3: 依據乘法公式,請參閱《舊業重溫5--又連乘又開根號,超大數求平方根問題》。
註2: 在《舊業重溫8》中解釋過,此近似值是高估的。

留言
avatar-img
留言分享你的想法!
avatar-img
傳義(R_Z_)的沙龍
19會員
153內容數
傳義(R_Z_)的沙龍的其他內容
2025/06/19
前一篇《舊業重溫9》提到,高中數學課程裡,並未有一套可解所有四次多項方程式的固定方法,雖然文中談及轉化成解二次方程原則,但前人仍發展出許多方法,應對各種不同的情況。該文儘管提供三種解法,猶然遠遠不足。剛好最近在油管(YouTube)上看到一則解四次方程式的影片,本文且藉由該方程式,來提供多一些技法,
Thumbnail
2025/06/19
前一篇《舊業重溫9》提到,高中數學課程裡,並未有一套可解所有四次多項方程式的固定方法,雖然文中談及轉化成解二次方程原則,但前人仍發展出許多方法,應對各種不同的情況。該文儘管提供三種解法,猶然遠遠不足。剛好最近在油管(YouTube)上看到一則解四次方程式的影片,本文且藉由該方程式,來提供多一些技法,
Thumbnail
2025/05/23
雖然四次多項方程式有公式解,高中課程並不教。高中生遭遇的題目通常最終可以轉化成解二次方程。解法大概有以下四種類型: 一、試算找出兩個解,便可分解成一次與二次因式的乘積。 二、嘗試分解成兩個二次因式乘積。 三、引進新變數代換成二次方程式的形式。 四、經由提示一個虛根,可分解為兩個二次因式乘積。
Thumbnail
2025/05/23
雖然四次多項方程式有公式解,高中課程並不教。高中生遭遇的題目通常最終可以轉化成解二次方程。解法大概有以下四種類型: 一、試算找出兩個解,便可分解成一次與二次因式的乘積。 二、嘗試分解成兩個二次因式乘積。 三、引進新變數代換成二次方程式的形式。 四、經由提示一個虛根,可分解為兩個二次因式乘積。
Thumbnail
2025/04/21
國中數學第三冊開始學根號√,把一個正數x放進裡面,代表x的正平方根,也就是平方以後剛好等於x的正數。這裡的x一般都從正整數開始學起,當x恰好是完全平方數(可等於某一正整數的平方),例如1、4、9、16、25等, √x會等於正整數;否則不但不等於任何整數,也不能等於任何兩個正整數的比值(數學家把這樣的
Thumbnail
2025/04/21
國中數學第三冊開始學根號√,把一個正數x放進裡面,代表x的正平方根,也就是平方以後剛好等於x的正數。這裡的x一般都從正整數開始學起,當x恰好是完全平方數(可等於某一正整數的平方),例如1、4、9、16、25等, √x會等於正整數;否則不但不等於任何整數,也不能等於任何兩個正整數的比值(數學家把這樣的
Thumbnail
看更多
你可能也想看
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
高中數學主題練習—和差角公式
Thumbnail
高中數學主題練習—和差角公式
Thumbnail
高中數學主題練習—和差角公式
Thumbnail
高中數學主題練習—和差角公式
Thumbnail
高中數學主題練習—配方法
Thumbnail
高中數學主題練習—配方法
Thumbnail
高中數學主題練習—配方法
Thumbnail
高中數學主題練習—配方法
Thumbnail
中學數學基礎練習—分數計算
Thumbnail
中學數學基礎練習—分數計算
Thumbnail
中學數學基礎練習—整數減法練習
Thumbnail
中學數學基礎練習—整數減法練習
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News